

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2139-2141

New syntheses of dalbergichromene and dalbergin from vanillin via neoflavene intermediate

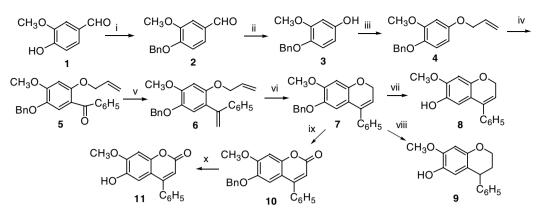
Sie-Rong Li,^a Liang-Yeu Chen,^a Jui-Chi Tsai,^a Jing-Yu Tzeng,^a Ian-Lih Tsai^a and Eng-Chi Wang^{b,*}

^aInstitute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan ^bFaculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan

> Received 11 December 2006; revised 15 January 2007; accepted 19 January 2007 Available online 26 January 2007

Abstract—In this Letter, naturally occurring dalbergichromene and dalbergin were synthesized from a common neoflavene intermediate, which was derived from vanillin. The giving neoflavene intermediate was debenzylated with AlCl₃ to yield dalbergichromene in 39% total yield, and it was oxidized by DDQ, and subsequently debenzylated by $Pd(OH)_2/C$ and cyclohexene in refluxing ethanol to give dalbergin in 31% total yield. © 2007 Elsevier Ltd. All rights reserved.

Plant Dalbergia species in China are known to be applied in traditional medicine as a remedy for blood disorders, ischemia, and inflammation.¹ Dalbergichromene, firstly isolated from the stembark of Dalbergia sissoo² and *Dalbergia latifolia*,³ belongs to the neoflavene family. Moreover, Dalbergin isolated from *Dalbergia* odorifera,^{1,4} belongs to neoflavonoids, and was investigated to have tumor-specific cytotoxicity.⁵ Neoflavenes attract the attention of chemists because it was not only found to have various biological activities,⁶ but also can be converted into other biological active coumarins.⁷ In addition, neoflavenes can be transferred into chroman-3-ones which were the important intermediates for various biological and therapeutic agents.^{8,9} Up to date, various strategies to deal with the syntheses of neoflavenes including the coupling reaction of 4trifluoromethylsulfonyloxy-2H-chromenes with arylboronic acids,¹⁰ a coupling reaction of the ligand with aryllead triacetates,¹¹ and so on¹² have been reported. However, there is no synthetic method for dalbergichromene disclosed. For the biological and chemical interest, we design a rational and simple synthetic strategy for both dalbergichromene (8) and dalbergin (11) through a common neoflavene intermediate 7, which


was prepared from vanillin via 6 steps. In addition, dihydrodalbergichromene (9) and *O*-benzyldalbergin (10) were also obtained in good yield, respectively (Scheme 1).

As a general procedure, vanillin (1) was treated with benzyl bromide to provide 2 in 98% yield which was subsequently oxidized with m-CPBA to give 3 in yield of 92%.¹³ Followed by the reaction with allyl bromide, 4 was given in yield of 98%. Subsequently, 4 was reacted with benzoyl chloride in the presence of zinc oxide at room temperature to afford 5 in yield of 61%. Compound 5 was allowed to react with methylene triphenylphosphine to undergo the Wittig reaction to give 6 in yield of 88%. Then, compound 6 was reacted with Grubbs' catalyst (II) to undergo the ring-closing metathesis, resulting in the formation of neoflavene 7 in yield of 96% as the key intermediate,¹⁴ and which was treated with AlCl₃ to undergo O-debenzylation to give dalbergichromene (8) in 85% yield. The ¹H NMR and other spectroscopic data reported for 8 either from the natural products² or semi-synthesis¹⁵ were comparable and coincident with our synthetic one.¹⁶ The reaction of compound 7 with cyclohexene and Pd(OH)₂/C in refluxing ethanol gave dihydrodalbergichromene $(9)^{17}$ in yield of 95% via O-debenzylation and reduction. Moreover, the reaction of compound 7 with DDQ in dioxane to undergo allylic oxidation afforded O-benzyldalbergin 10 in 78% yield.¹⁸ After debenzylation of 10 with $Pd(OH)_2/C$ and cyclohexene in refluxing ethanol,

Keywords: Neoflavene; Neoflavonoid; Dalbergichromene; Dihydrodalbergichromene; Dalbergin.

^{*} Corresponding author. Fax: +886 7 3125339; e-mail: enchwa@ kmu.edu.tw

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.117

Scheme 1. Synthesis of dalbergichromene (8), dihydrodalbergichromene (9), *O*-benzyldalbergin (10), and dalbergin (11). Reagents and conditions: (i) $C_6H_5CH_2Br$, K_2CO_3 , acetone, reflux 5 h, 98%; (ii) *m*-CPBA, CH_2Cl_2 , 12 h, 6 N NaOH–MeOH, 3 h, HCl–H₂O, 92%; (iii) allyl bromide, K_2CO_3 , acetone, reflux, 8 h, 98%; (iv) C_6H_5COCl , ZnO, rt, 61%; (v) $Ph_3P^+CH_3Br^-$, *tert*-BuO⁻K⁺, 88%; (vi) Grubbs' cat. (II), CH₂Cl₂, 96%; (vii) AlCl₃, CH₂Cl₂, 85%; (viii) Pd(OH)₂/C, cyclohexene, EtOH, reflux, 95%; (ix) DDQ, dioxane, 77%; (x) Pd(OH)₂/C, cyclohexene, EtOH, reflux, 87%.

dalbergin $(11)^{19}$ with spectral data identical to that reported,¹ was produced in 87% yield.

In conclusion, besides we have disclosed the first and an efficient method to prepare the naturally occurring dalbergichromene (8) in 39% total yield, the other naturally occurring compound dalbergin (11) was also prepared from the same common neoflavene (7) intermediate in 31% total yield.

Acknowledgments

We are grateful to the NSC (Taiwan) for financial support. We are also thankful to Professor Hiroki Takahata, Tohoku Pharmaceutical University, Japan, for his advice and encouragement.

References and notes

- Chan, S. C.; Chang, Y. S.; Kuo, S. C. Phytochemistry 1997, 46, 947–949.
- Mukerjee, S. K.; Saroja, T.; Seshadri, T. R. *Tetrahedron* 1971, 27, 799–803.
- Dhingra, V. K.; Mukerjee, S. K.; Saroja, T.; Seshadri, T. R. *Phytochemistry* 1971, 10, 2551.
- Donnelly, D. M. X.; O'Reilly, J.; Thompson, J. C. Phytochemistry 1972, 11, 823–826.
- Kawase, M.; Sakagami, H.; Motohashi, N.; Hauer, H.; Chatterjee, S. S.; Spengler, G.; Vigyikanne, A. V.; Molnar, A.; Molnar, J. *In Vivo* 2005, *19*, 705–711.
- Ravise, A.; Kirkiacharian, B. S. Phytopath. Z. 1980, 97, 219–233.
- Donnelly, D. M. X.; Kavanagh, P. J.; Kunesch, G.; Polonsky, J. J. Chem. Soc., Perkin. Trans. 1 1973, 9, 965– 967.
- (a) Levine, C.; Hiasa, H.; Marians, K. J. Biochim. Biophys. Acta, Gene Struct. Expr. 1998, 1400, 29–43; (b) Vlietinck, A. J.; De Bruyne, T.; Apers, S.; Pieters, L. A. Planta Med. 1998, 64, 97–109.
- (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 59–62; (b) Xie, L.; Takeuchi, Y.; Cosentino, L. M.; McPhail, A. T.; Lee, K. H. J. Med. Chem. **2001**, *44*, 664–671.

- Eguchi, T.; Hoshino, Y.; Ayame, A. Bull. Chem. Soc. Jpn. 2002, 75, 581–585.
- 11. Donnelly, D. M. X.; Finet, J. P.; Guiry, P. J.; Nesbitt, K. *Tetrahedron* **2001**, *57*, 413–423.
- 12. Pastine, S. J.; Youn, S. W.; Sames, D. Tetrahedron 2003, 59, 8859–8868.
- (a) del Carmen Cruz, M.; Tamariz, J. *Tetrahedron* 2005, 61, 10061–10072; (b) da Silva, A. J. M.; Melo, P. A.; Silva, N. M. V.; Brito, F. V.; Buarque, C. D.; de Souza, D. V. V.; Rodrigues, P.; Pocas, E. S. C.; Noel, F.; Albuquerque, E. X.; Costa, P. R. R. *Bioorg. Med. Chem. Lett.* 2001, 11, 283–286.
- 14. Synthesis of 7: A solution of 6 (0.33 g, 0.89 mmol) in CH₂Cl₂ (60 mL) was stirred and Grubbs' catalyst (II) (0.05 g, 0.06 mmol) was added at rt under dry argon. The resulting mixture was continually stirred for 8 h. After work-up as general procedure, and chromatographic purification process (silica-gel, EtOAc-n-hexane = 1:15), pure 7 (0.29 g, 96%) was given as colorless liquid, $R_{\rm f}$ 0.35 (ethyl acetate–*n*-hexane = 1:10); UV (CH₂Cl₂) 211, 234, 320 nm; IR (KBr) 2924, 2352, 1612, 1503, 1454, 1379, 1271, 1193, 1017, 808, 747 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 3.85 (s, 3H, OCH₃), 4.74 (d, J = 4.0 Hz, 2H, H-2), 4.94 (s, 2H, $CH_2C_6H_5$), 5.63 (t, 1H, J = 4.0 Hz, H-3), 6.53 (s, 1H, ArH), 6.56 (s, 1H, ArH), 7.16 (m, 2H, ArH), 7.28 (m, 8H, ArH); ¹³C NMR (CDCl₃, 50 MHz) δ 55.94 (OCH₃), 65.26 (C-2), 71.84 (OCH₂C₆H₅), 100.93, 113.36, 115.42, 117.0, 127.45, 127,56, 127.61, 128.32, 136.93, 137.20, 138.12, 141.79, 149.94, 150.70; EI-MS (70 eV) m/z (intensity), 344 (M⁺, 22), 281 (38), 254 (18), 253 (M⁺-91, 100), 249 (23), 221 (22), 165 (26), 115 (14); HRMS calcd for C₂₃H₂₀O₃: 344.1412. Found: 344.1413.
- 15. Jurd, L.; Rottman, J. N. Tetrahedron 1978, 27, 57-62.
- 16. Dalbergichromene **8** was obtained as a colorless crystal, mp 99–101 °C (petroleum ether) [reported,² mp 99– 100 °C], $R_{\rm f}$ 0.36 (EtOAc–*n*-hexane = 1:4), ¹H NMR (CDCl₃, 400 MHz) δ 3.86 (s, 3H, OCH₃), 4.76 (d, J = 4.0 Hz, 2H, H-2), 5.21 (s, 1H, OH), 5.69 (t, J =4.0 Hz, 1H, H-3), 6.51 (s, 1H, ArH), 6.62 (s, 1H, ArH), 7.31 (m, 5H, ArH), ¹³C NMR (CDCl₃, 100 MHz) δ 56.02 (OCH₃), 65.30 (C-2), 99.96, 111.53, 116.60, 117.52, 127.69, 128.32, 128.52, 137.13, 138.30, 139.59, 146.73, 148.51; HRMS (ESI) calcd for C₁₆H₁₄O₃Na [M+Na]⁺: 277.0841. Found: 277.0838.
- 17. Compound 9 was obtained as a colorless crystal, mp 96–97 °C (*n*-hexane); UV (CH₂Cl₂) λ_{max} 232, 300 nm; IR (KBr) 3500, 1631, 1499, 1451, 1387, 1349, 1261, 1161, 1132, 1063, 1027, 885, 806, 757, 702 cm⁻¹; ¹H NMR

2141

(CDCl₃, 400 MHz) δ 2.05 (m, 1H, H-3a), 2.28 (m, 1H, H-3b), 3.85 (s, 3H, OCH₃), 4.07 (d, J = 6.4 Hz, 1H, H-4), 4.13 (m, 2H, H-2), 5.11 (s, 1H, OH), 6.37 (s, 1H, ArH), 6.42 (s, 1H, ArH), 7.11 (m, 2H, ArH), 7.21 (m, 1H, ArH), 7.28 (m, 2H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 31.97, 40.58, 51.91, 63.97, 99.73, 115.16, 116.25, 126.41, 128.41, 128.55, 139.36, 145.69, 146.09, 148.47; EI-MS (70 eV) m/z (intensity), 257 (M⁺+1, 19), 256 (M⁺, 100), 240 (8), 239 (8), 228 (24), 227 (32); HRMS (ESI) calcd for C₁₆H₁₆O₃Na [M+Na]⁺: 279.0997. Found: 279.0996. Anal. Calcd for C₁₆H₁₆O₃: C, 74.98; H, 6.29. Found: C, 74.71; H, 6.29.

18. Synthesis of 10: 7 (0.15 g, 0.44 mmol) dissolved in 1,4dioxane (5 mL) was reacted with DDQ (0.2 g, 0.88 mmol) at rt for 1 h. After usual work-up and chromatographic purification process (silica-gel, EtOAc-*n*-hexane = 1:4), 10 was produced (0.12 g, 77%) as pale yellow crystals, mp 119–120 °C (*n*-hexane), $R_{\rm f} = 0.68$ (ethyl acetate–*n*-hexane = 1:2), ¹H NMR (CDCl₃, 200 MHz) δ 3.98 (s, 3H, OCH₃), 5.04 (s, 2H, OCH₂C₆H₅), 6.20 (s, 1H, H-3), 6.84 (s, 1H, H-5), 6.92 (s, 1H, H-8), 7.27 (m, 7H, ArH), 7.47 (m, 3H, ArH); ¹³C NMR (CDCl₃, 50 MHz) δ 56.38 (OCH₃), 71.45 (OCH₂C₆H₅), 100.44, 110.97, 111.23, 112.12, 127.33, 128,00, 128.19, 128.57, 128.81 129.44, 135.51, 136.31, 144.53, 150.32, 153.57, 155.46, 161.30; EI-MS (70 eV) *m/z* (intensity), 358 (M⁺, 5), 268 (20), 267 (100), 236 (30), 235 (69), 209 (24), 208 (21), 207 (45), 91 (72). Anal. Calcd for C₂₃H₁₈O₄: C, 77.08; H, 5.06. Found: C, 77.10; H, 5.09.

19. Dalbergin 11 was obtained as pale yellow crystals, mp 210–211 °C (EtOAc–*n*-hexane = 1:1) [reported,¹ mp 211–212 °C], $R_{\rm f} = 0.58$ (ethyl acetate–*n*-hexane = 1:1), The spectral data such as ¹H NMR, ¹³C NMR, EI-MS are all coincident to the reported dalbergin.